The Alfa’s Weber Carb Overhaul, Part 2

In all the years I’ve been turning wrenches on cars as both a professional and a hobbyist, I’ve had plenty of successes and more than a few botched repairs, probably about the same as anyone else with my experience. While I’m reluctant to refer to myself as a skilled technician, I will acknowledge that I enjoy being the student, and the desire to learn has only grown stronger as I’ve gotten older. Before diving into a project, I’ll research it as much as possible in order to approach the task in a more educated way.

This willingness to go ‘back to school’ as it were paid off when working on the Weber carburetors on my Alfa. In my first blog post on this topic back in early October of this year I said the Webers seemed “unnecessarily complex”. In fact, they really aren’t. The perceived complexity exists in the myriad combinations of different sized jets and deciding whether to replace them. Changing jet sizes up or down can be a trial-and-error process, involving test drives, spark plug examinations, and yet more jet swaps. In my case, there was no need to replace jets, as I was having no related driveability issues. That kind of experimentation becomes necessary when installing Webers on a modified engine, or on a vehicle not originally fitted with them. (One of the best online articles I found re: Weber side draft operation was on a Datsun 240Z website, as these side drafts are a very popular upgrade on that sports car.)

The sole reason for the ‘rebuild’ was to replace leaky seals and gaskets, after which I would need to reset the basic settings. I was using no fewer than four different Alfa Romeo / Weber service manuals, and while there were some slightly different approaches among the four, they all agreed on the basics. Those basics were: Remove the top, side, and bottom covers (note that the float is attached to the top cover). Do NOT remove the jets, throttle plates, or throttle shaft. Clean out the carburetors. Set the float height. Reassemble the carbs with new seals and gaskets. Reset the idle air/fuel mix, the carb synchronization, and the engine idle.

Throttle plates (butterflies) and shaft were sprayed clean but left in place

One service tip I learned is that good access to the carbs is available without unbolting them from the engine. The float, the internal mesh filter and all the jets are all accessible once the top cover is removed, held on with 5 screws plus the fuel line banjo bolts. On my car, one does not even need to touch the plenum cover. However, I wanted to get to the bottom cover, and also wanted to perform a thorough ‘off the car’ cleaning.

All screws are slotted; this right-angle bit on a ratchet provided good leverage and avoided stripping screw heads

The float setting is a bit fussy. There are actually two settings: the top and the bottom. The top cover gasket must be in place. The two setting measurements are 8mm and 14.5mm, and the books claim that a deviation over 0.5mm can be troublesome. I fashioned my own measuring tools, one using a hex key wrapped with masking tape, and the other made from a piece of rubber hose. Both floats were off enough that they needed both their top and bottom settings adjusted.

Float is attached to top cover. Two homemade measuring tools are shown.

The new rubber carb mounts arrived from Classic Alfa, and I was a little disappointed that the studs were not anchored in place. It’s a good thing I discovered this before putting it all together, and the problem was easily resolved with some threadlocker. While I can’t prove that my old rubber mounts were part of any problem, the rubber was clearly past its prime.

Loose studs fixed with threadlocking liquid

 

Old rubber mounts are probably 20 years old. One cannot see this while mount is on car.

It was news to me that there was a mesh screen filter inside each of the carbs. Thankfully, a replacement was part of the carb gasket kit. I went through about 5 cans of Gumout before I was reasonably satisfied with the cleanliness, and even then, there was some dirt on the outside (but none on the inside).

Mesh screen filter at top. Old metal screen on L, new plastic one on R.

The corner had been turned, and it was time for reassembly. First, the rubber mounts were bolted to the intake manifold (remember that half the bolts are hidden on the cylinder head side of the manifold). Adding yet another step to this litany of work, I decided at the last minute to replace the coolant, which was more than several years old. This meant hunting down some old-fashioned green antifreeze and distilled water (Walmart was down to its last 5 gallon bottles of distilled, but I only needed 2). The manifold was bolted back to the cylinder head, the coolant hoses were reattached (it’s a wet manifold), and the radiator was filled.

 

The cleaned carbs were bolted to the rubber mounts, and the choke and throttle linkages were reattached. I decided for now to leave the intake plenum off the car. The engine would run without it, and I didn’t want to do any more work than necessary in the very unlikely event that the carbs needed to be removed again.

Cleaned and resealed carbs back home (for now)

It was time to try to start the car.

Many minutes were spent pumping the throttle and cranking the engine in short bursts so as not to overheat the starter motor. The engine wasn’t even trying to start. After about five minutes of this, I knew that something else needed to change. Each two-barrel carb has two idle mixture screws, so there are four, one for each barrel (obviously). My repair books differ in describing the basic setting of these idle mixture screws. While all the service literature agrees that each screw should be turned down to ‘bottom’, then turned ‘out’ (counterclockwise), the exact number of recommended turns differs. I had settled on one full turn out, while some books recommended two, and others didn’t even give an exact number. When the car wouldn’t start, I turned each idle air mix screw one full turn further out. Climbing back into the car, the engine started on the next try.

Next, the books advised on how to continue with the basic settings, including carb synchronizing and idle setting. Before either of these can be set, however, the engine needs to reach full operating temperature. I watched both the temperature gauge and the coolant level, and both were fine. But as the engine warmed up, the idle kept increasing. Nothing I did at the carbs seemed to have any effect on my ability to lower the idle. After a few minutes, the car was ‘idling’ at 2500 rpm, and it should be between 800-1000 rpm. While I was happy that the car was running, and running well to my ears, something else was up with the idle control. It was time to shut it down and hit the books again.

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

Alfa Carb Leak Lands Them on My Workbench

It’s long been a tenet in the old car hobby that cars like to be driven; they don’t do well when they sit; and as long as you’re on top of maintenance, there’s no reason not to expect some reliability from an older car.

I’ve been lucky with the Alfa Romeo (although frankly, luck has little to do with it): having purchased the car in March of 2013 with 54,000 miles on the odometer, by July of 2019, the car had just shy of sixty-six thousand on the clock. In a little over six years, I managed to drive a 1967 Italian car almost 12,000 miles, which neatly works out to 2,000 miles a year. That changed, though, when the brakes seized, resulting in a complete teardown and rebuild of the braking system that took a year to complete. The car had not sat silent under my ownership for that long before, and when I did restart it, it ran poorly. Suspecting the fuel had gone sour, I drained the tank, added fresh premium, and swapped out the plugs. Success! Except … now I had a fuel leak under one of the carbs.

So, much of September was spent reading up on Weber carburetors. At first blush, they seem unnecessarily complex. Add to that complexity the words of the late Pat Braden, as he wrote in The Alfa Romeo Owner’s Bible, a copy of which I own (and I’m paraphrasing here): “if your car is running fine, don’t touch the carbs. Everyone wants to fiddle with the carbs. If it’s running ok, leave the carbs alone”.

Well, Pat, the car does ‘run’ fine, but liquid fuel dripping onto my starter motor does not get me very excited, at least not in a good way. I did some more research, including reading some very helpful posts on the Alfa BB (Bulletin Board), and concluded that the gaskets and seals were probably old, and the float height should be measured and adjusted, but other than that, I am going to leave the carbs alone!

From bottom: plenum; carbs; intake manifold

I’ve never removed the Webers from my car before. Removal didn’t look complicated, but would certainly prove to be time-consuming. First, the upper plenum is removed (two hose clamps, one bolt, and two nuts, all easily accessible). Next, the lower plenum comes off (ten nuts and washers, four of which are totally blind). Now one has access to the carbs themselves (eight nuts, four of them blind). Once the banjo bolts for the fuel connections are undone, the carbs can be removed from the car. The carburetors bolt to 4 rubberized mounts, each of which has 4 studs. To remove the mounts, one first must remove the intake manifold, as 8 of the nuts for the mounts are only accessed if the intake manifold is unbolted from the cylinder head (7 nuts, some of them only reachable with an open-ended wrench, which only allows 1/6 of a turn at a time).

With carbs gone, rubber mounts are obvious. Note starter motor.

 

Intake manifold half off cylinder head

Back to these rubberized carb mounts: it was eye-opening to learn from the Alfa BB that side draft carbs, hanging off the right side of the cylinder head, are prone to enough vibration to cause fuel delivery issues. To combat that, Alfa employed a bracket extending upward from the right motor mount to the lower plenum, and mounted the carbs on rubber mounts which absorb vibration. But a number of the Alfa owners on the BB stated that these mounts should be considered service items: eventually, the rubber hardens and develops hairline cracks which allow air to enter the intake stream, throwing off the fuel-air mixture.

Manifold on bench, giving better view of carb mounts

 

Former owner Pete must have replaced them at one point, because I had an old set among the spares he had given me. Checking the website of my favorite (really only) parts supplier Classic Alfa, I saw that they had a carburetor gasket kit for $35, and new carb mounts for $25 each. That all seemed reasonable enough, and as usual, my order arrived from the UK 48 hours after I placed it. I was ready to get to work.

Both carbs on the bench

 

Removal of top cover exposes all jets

 

Service books clearly state to leave throttle plates and shaft in place unless obviously defective

 

It was important for me to stay focused on the goal: I wanted to clean out the carburetors, inspect them for any obvious faults, then reassemble them using all new gaskets. Perhaps it’s from a lifetime of dealing with old cars, but I do have the habit of over-repairing my vehicles. The issue with Webers is that other than setting the idle mixture, idle speed, and float height, any other adjustments involve a lengthy trial-and-error game of swapping jets. One more time: aside from the fuel leak, the car ran fine. I selected the rear-most carb (the leaker) and removed all the covers.

Screens under choke control were black

 

They cleaned up nicely with Gumout

 

Having several service manuals with exploded diagrams at my side, things didn’t look too bad. There was clearly some dirt built up, but no obvious faults or defects as far as I could see. Numerous cans of Gumout were emptied to clean things up, and I’ve been pleased with the progress. The float needs to be carefully measured and adjusted, and once that’s done, reassembly will commence, which is where I will pick up next time.

Float is attached to top cover, adjusted by bending brass tabs

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

Alfa Romeo brake system overhaul, Part 8

With the Alfa’s hydraulic brake replacement essentially finished, there was one more related task to complete. As the previous owner had suggested to me, the battery B+ cable could stand to be replaced. Not only had he indicated that it was undersized, he also wasn’t sure that its attachment points had stood up over time. (My car was born with its battery in the engine compartment, but Pete had relocated it to the trunk, where it still is.)

Conveniently, the cable almost completely followed the routing of the brake line from rear to front. There was no extra work to dropping the battery cable when removing the brake lines. The old cable looked to be possibly 2 gauge; I had purchased a “Battery Relocation Kit” which included 20 feet of zero gauge cable (the smaller the number, the larger the cross-section). I only needed about 16 feet.

The old cable had been secured in place with metal hose clamps; thankfully, there were no signs of potential incendiary damage. The new cable followed the same routing as the old, and instead of clamps, I used about two dozen high-temp plastic cable ties. (Cable, or “zip” ties, are available in different quality levels. In the past, I had some which snapped upon tightening. For this job, I researched and purchased higher quality cables.) I was quite happy with the appearance of the end result; the new cable is tucked far enough up into the underside that at no point is it the lowest object under the car.

New battery cable securely in place under the car

To gain access to the starter solenoid, I had removed the intake plenum. (Alfas and some other Italian cars do not have a traditional intake manifold. Instead, the air filter feeds air to the plenum, mounted to the outside of the side-draft carburetors. The carbs in turn are mounted to small tubes which themselves are bolted directly to the cylinder head.) I gave the plenum a cleaning, ran a 6mm x 1.0 tap on all the studs, used new washers and nuts, and with new gaskets at the ready between plenum and carbs, bolted it all back together. The thread chasing and new nuts helped immensely given that 4 of these attachments are completely blind and are in tight quarters.

Dirty plenum, old gaskets

Clean plenum, new gaskets

Saturday was going to be the big day; there always are the dozen final details (spark plug wires and various other small connections underhood), and I triple checked all around the car, which was still on jackstands, still with tires off. The battery had been on trickle charge. Nervously, I completed the final connections at the battery. Nothing caught fire. Climbing up into the driver’s seat, I turned the key on, pumped the pedal about a half-dozen times, and cranked. The crank was strong, but the engine made no attempt to run on its own. Key off, pump the pedal some more, try again. And again. I smelled fuel, got out, and peered underneath. Raw fuel was pouring out from under the front right corner. Key off, battery safety switch turned to off. Time to stop, take a breath, and think.

Was this related to what I had been working on the last 11 months, or was this complete coincidence? Grabbing a flashlight, I looked into the right front corner, where the mechanical fuel pump and fuel filter are. Feeling with my hands, the wettest area was the rubber fuel line for the pump’s outlet. It took about 2 minutes to loosen the clamps and remove the hose.

Old hose looks quite bad

The hose was completely dry-rotted. First, I breathed a sigh of relief that it was ‘just’ a hose. I also immediately realized that, like the brake system I had just overhauled, I really didn’t know how old these hoses were. A quick car ride (with mask) to Advance Auto Parts, and I was back with 3 feet of 5/16” fuel hose.

Old hose looks worse close up

Sunday morning, all 4 fuel hoses, each only about 8-10 inches long, came off and were replaced with fresh rubber. Time to try again. This time, after about 7 to 8 pumps of the pedal (and no leaks), the engine started. Hooray! I bolted the tires back into place, removed the jackstands, and my Alfa was back on the ground for the first time since July of last year.

New fuel hose is CARB-compliant

Gingerly, I moved the car outside under its own power. The brakes worked well, even if the pedal still felt a little soft. One more round of bleeding is in order. I’m also going to try to adjust the ‘throw’ at the master cylinder, as the brake pedal is not quite lined up with the clutch pedal. These are mere details, and I will get to them in the coming days. For now, I’m happy, satisfied, and truly pleased to be able to say that this project is done.

My Alfa sees sunshine for the first time in 11 months

 

Here, nicely framed by garage door; can’t wait to put some miles on it.

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

 

 

Alfa Romeo brake system overhaul, Part 7

I’ve always likened working on an old car, when there’s little or nothing in the way of published instruction, to dancing the tango. It’s two steps forward, and one step back. Two forward, one back. And repeat….

In the last post about the Alfa’s brakes, two weeks ago, I wrote about the awkward position of the brake master cylinder. Like so many cars with pedals coming up from the floor (what Alfisti call “standing pedals”), the master is underneath, bolted to the pedal box. When I removed the master cylinder last fall, there were no written instructions to follow. I loosened the pedal box just enough to lower it and access the two bolts holding the master in place. The removal was such a chore that frankly I had been dreading the reinstallation.

Re-reading my words in that last post, I see that I was unintentionally vague. The sentence that now bothers me reads “Once the lines to the master cylinder are done, I need to reinstall the pedal box in the driver’s footwell, as all three pedals had to be loosened/removed to gain access to the master.” My sentence leaves it completely unclear whether I had removed the entire pedal box, or had merely loosened it, when in fact it was the latter.

Why am I harping on this? Because I found myself doing the tango. In the process of attempting to reinstall the new master, I ended up completely removing the pedal box from the car. If only I had done this during the initial disassembly! The hang-up was a bracket which I had mistakenly identified as part of the transmission cross member, but is a bracket for the front exhaust pipe. Laying on my back, on the garage floor, holding a flashlight, and trying to focus through my progressive lenses made its correct identification difficult. Once I realized that it could be safely removed, I undid 5 bolts and it was off. Suddenly, the entire pedal box was in my hands. Eureka!

Pedal box on my workbench. New master is in front.

Since the exhaust bracket was off, I replaced the two rubber bushings inside it, cleaned it up, and repainted it with Eastwood Chassis Black. When friends ask why this brake job isn’t finished yet, it’s these “might as well as” side jobs which eat up time, but are important to complete.

 

With paint open, I dipped the bolt heads and nuts in it. Drilled wood holds them while they dry.

With the new master cylinder bolted in place, I reinstalled the pedal box, sealing it against the unibody with fresh dum-dum (I have a box of 3M dum-dum that’s probably 25 years old, and that stuff stays pliable!). The two final brake lines were bent to line up with the threaded inserts on the master, and I was happily surprised that I got the threads to “bite” after just a few minutes of trying.

Brake lines at master, ready to be bent to shape

The time had come to add fresh brake fluid to the system. I filled the reservoir, attached the little magnetic one-man bleeder bottle from Eastwood to the right rear caliper bleed screw (always start with the brake furthest from the master), and began to pump the brake pedal by hand. Forum posts on the Alfa Bulletin Board (AlfaBB) recited tales of horror about the difficulties in bleeding Alfa hydraulic brakes. I believe that later cars with dual circuits AND dual servos can be a challenge to bleed. I was happily shocked that I had fresh fluid coming through the hose on the bleeder screw on the second or third try.

This item, under $10, makes one-person bleeding a breeze

I was less happily shocked to also see that I had some leaks. There were two leaks at flare fittings that still weren’t tight enough. An eighth of a turn with the 7/16” flare nut wrench solved that. I continued to add fluid and pump the pedal, moving from right rear to left rear to right front to left front. But then a larger fluid leak sprung, from a lousy location: the master cylinder. I got under the car, but both lines at the master were as tight as I dared to make them. My heart sank. Could the new master cylinder be defective?

When you’re doing the tango, and your feet start to go in a direction that could make you trip and fall, it’s sometimes best to get off the dance floor. I put down all the tools, exited the garage, went for a walk, and came back to have lunch. (I learned during the Isetta restoration that before anxiety drives you to act hastily and BREAK something, walk away, think about it, then go back to it.)

An hour later, I believed I had diagnosed the problem, without even touching the car. The leaking line ran from the exit port on the master up to the brass four-way junction block on the firewall. I remembered that when I had formed that line, I told myself that it was “symmetrical”, that is, the same flares and the same flare nuts on each end. While the flare NUTS were the same, the flare at the master needed to be an ISO bubble flare, and I had formed a 45 degree double flare. It took about two minutes to pop that line out of the master to confirm my diagnosis. Yup – I formed the wrong flare fitting.

Oops. Old line at left is bubble flare; new line with double flare doesn’t match.

Back to the two steps forward and one back routine. It was a complete pain to remove that line, cut off the wrong flare, make a new flare, and fit the line back in place. However, the rapid diagnosis made up for it. The fixed line was back on the car, bleeding resumed, and there were no leaks. In a short while, I had a pedal! I’ll bleed the entire system one more time, then the hydraulic work will be done.

 

This is better.

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

Alfa Romeo brake system overhaul, Part 6

There is light at the end of the tunnel.

Perhaps the ongoing lockdown has distorted my sense of time. Brake System Update Part 5 was posted on April 3, and I would have guessed that it was more recent than that. Progress has continued, and I’m not shy about admitting that 12 weeks of working from home has allotted additional free time with the removal of a two hour round-trip commute. It also felt redundant and nonconstructive to add a post which only stated “… and today I cut and flared two more brake lines….”

The month of May had me in limbo because of the master cylinder. I was keen on keeping the original part and simply rebuilding it. I had taken a chance last year by ordering a rebuild kit that I knew might not work, and it didn’t. Then I found a new supplier based in Germany whose website looked like they had the correct ATE rebuild kit. That order was placed in late April, and I’m still waiting. Supposedly DHL has the part (or more likely has lost the part).

New reinforced brake hose alongside old hose

As much as I wanted to avoid the expense of a new master, I bit the bullet and bought a brand new unit (almost two bills) from my main vendor Classic Alfa. One concern is that there are so many master cylinder variants (standing vs hanging pedals, LHD vs RHD, non-servo vs one servo vs two servos, 20mm bore vs 22mm bore). While I was nervous about getting the correct one, I needn’t had worried. It arrived in two days (the usual Classic Alfa timeliness), and all threaded fittings and mounting points are 100% accurate.

Clamping the brake line forming tool in the bench vise frees up both hands to manipulate the line

As of today: all 3/16” brake lines have been replaced with new lines cut and formed by me, all new flare fittings are on, and all lines are in place on the car (some final fitting still needs to be done). All three rubber brake hoses have been replaced with steel woven reinforced pieces (this is a case where originality is easily overridden by better quality).

New male and female brake line fittings plus bleeder screw caps

All four rebuilt brake calipers have been reinstalled, with new Ferodo pads in place (the Centric front pads I had installed several years back shed a lot of dust; let’s see if these are better).

Old and new pads side-by-side

The new master is (loosely) bolted in place, but the two brake line connections have yet to be made to it. (Not since the Isetta have I worked on a car with the master located below the floor. The Isetta was easy because the body had been removed from the chassis. The accessibility on the Alfa is horrible.) Once the lines to the master cylinder are done, I need to reinstall the pedal box in the driver’s footwell, as all three pedals had to be loosened/removed to gain access to the master.

I can’t prove it, but “ATE” mark on rear pad might indicate it’s never been replaced

I then have the ‘extra’ job of replacing the positive cable for the battery. The previous owner had relocated this car’s battery from the engine compartment to the trunk, and used (in his own words) “a battery cable sourced from a junkyard Renault”. Since purchasing the car from him, he has recommended that I replace this cable. I’ve purchased a much heavier-duty one from Taylor Cable, which needs to be cut to size and have the appropriate terminals connected. Part of the intake plenum was removed for access to the starter, so that will need to go back together.

New caliper pins (L) didn’t fit, had to clean up & reuse old ones (C & R). Never throw old parts away!

The goal is to get this vehicle off the 4 jack stands upon which it’s been sitting before we reach the first anniversary of the brake seizure which happened in July 2019. I miss driving my Alfa! As I said, there is light at the end of the tunnel.

It may not look like much, but this is progress

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

 

Alfa Romeo brake system overhaul, Part 5

A big part of this brake project has always been the intention to replace all the hard lines. It was back in the fall of 2019 (days we’ll forever remember as “pre-coronavirus”) when I purchased a 25’ roll of new CuNiFer (copper/nickel/iron) brake line (from FedHill) and all new line fittings (from Classic Alfa), knowing that the day would come when I’d need them.

Well, that day did come, and I’ve spent a somewhat enjoyable last few days in the garage making up the new lines. The rear rotors and calipers have been bolted back in place, so with the old lines as templates, I cut the first two new lines for the two rear calipers to the appropriate lengths.

The creation of new brake lines requires that the ends be flared, which requires a special tool. I have one of those cheap old flaring yokes, a tool I’ve had for so long that I couldn’t tell you the last time I used it. Maybe never. My good friend Mike G owns a high-end brake flaring tool kit made by Eastwood, which he generously loaned to me. I’m going to walk you through the step-by-step process, which on an old Alfa like mine can be a bit tricky! You’ll see in a moment.

The Eastwood brake flaring tool

With the exception of the ¼” hard line from the brake fluid reservoir to the master cylinder, all the other hard lines on the car are 3/16”. That’s the easy part. The fittings, on the other hand, are a mixed bag. The car’s four-wheel ATE calipers use metric M10x1 threads, while most of the remaining connections, such as at both front and rear T-fittings, use UNF 3/8”-24 threads. Further, the M10 end requires an ISO bubble flare, and the 3/8” end takes a double 45° flare. Please don’t ask me why – I’ll just point to the car and say “that’s how the Italians did it!”

The Eastwood tool, which I used for the very first time this week, is a bit intimidating at first. The instructions in the box are ok, but I thought it would be wise to cut a few short pieces of pipe and make some test flares (I purchased about 7 feet more brake line than needed, because sooner or later I’ll make a mistake and need to redo a line).

L to R: new fitting, test pipe w/ISO bubble flare, old pipe w/same

The Eastwood instruction book states that before you make a flare, you should do 3 things with the cut tube: run a file on the inside to remove burrs; run a file on the outside for the same reason; and slightly chamfer the edges. I dutifully followed instructions.

The tool itself is designed to be securely clamped into a bench vise. The two most important pieces which require your utmost intention are the tube-holding dies in 4 different sizes, and a rotatable disc with the various flare-forming dies. This is when I discovered that the 3/16” tube die is double-ended: it says 45° on one side, and DIN on the other. The instruction book didn’t say too much about this.

All the flare-forming dies are on this disc

 

I grabbed the 3/16” tube-holding die and placed it into the tool, with the 45° double-flare at the business end. The tube itself was inserted between the two halves of the die, and with the disc’s “OP. 0” (Operation Zero) facing the tube, I pulled the handle. This step simply squares up the end of the tube with the end of the die. Once done, I made sure the clamp was tight.

OP ZERO before squaring the tubing

OP ZERO after tubing end is squared with die

Rotating the disc to “OP 1, 3/16”, I again pulled the handle. As a final step, the forming die disc was rotated to “OP 2, 3/16”, the handle was pulled, and I removed the tubing to examine my work. It looked good! I had a nice, neat 45° double flare.

OP 1, step one of the 45 degree flare

 

OP 2, step 2 of the 45 degree flare

 

45 degree double flare done!

Before you flare the other end of the tube, you MUST slide on the two flare fittings; once both ends are flared, you’ll never get them on. In my case, not only did they need to face the correct way, they needed to be the correct threads! With the 45° double flare done, the 3/8” fitting went on first, and then the M10 fitting. It is highly recommended to delay the celebratory glass of vino until AFTER these steps are completed.

Pay attention! L to R: M10 flare fitting, 3/8″ flare fitting, 45 degree double flare on pipe end

It was a good thing that I had made some test pipes, which is when I discovered that the DIN end of the tubing die would make the needed ISO flare. I further discovered via experimentation that while the forming die does have an “OP 1” and “OP 2” for the DIN flare, I needed only “OP 1” to get a bubble flare that matched my old brake line.

ISO bubble flare done!

I’ve made two lines so far, and am quite pleased with the progress. It’s a nice feeling to have rounded the curve and to have begun reassembly. With most collector car events cancelled for the spring, the pressure is off, but the progress continues.

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

 

Don’t have the right tool for the Alfa’s brakes? Then MAKE the tool!

I’ve often referred to the two years I spent as a professional automotive technician as my “post-college” graduate work. It was a different kind of education, and included the benefit of earning a salary. One of the earliest lessons, and one I still carry today, is that there is no substitute for having the right tool for the job at hand. The correct tool ensures that the repair is done correctly, safely, and within a reasonable amount of time. It is not an exaggeration to state that there were times when sweat dripped from my brow, and curses sprang from my lips, when the lack of the appropriate tool made a repair attempt a real struggle.

A corollary lesson states that sometimes, one needs to practice some creativity and “invent” a tool, perhaps by assembling one from hardware parts, or by modifying an existing tool. This point was put into practice during the Isetta restoration, as tools for that car aren’t exactly found in your local NAPA store.

The challenge rose up again during the recent brake work on my Alfa. I found myself struggling with the reassembly of the parking brake shoes, which reside inside the rear brake rotor ‘hat’. The shoes and their assorted springs and clips came apart easily enough. But now my efforts to put it all back together were just taking too long.

Let me be more specific: the brake shoe assembly mounts to a backing plate, like on most cars. Unlike most cars, though, the wheel hub is mounted on a bearing that is press-fitted into place through the backing plate. The parking brake reassembly would be easier if the hub were not in the way, but to remove it, I would need to remove the entire axle and press the hub and backing plate apart. That was more work than I wanted to bother with. I was convinced that there was a way to put the parts back on with the hub in place.

And Alfa Romeo actually made that accommodation. The hub surface has two additional holes, lined up in such a way to allow a tool to pass through them to access the brake shoe hold-down pins. The pins require a 5mm Allen tool, and I have one as a 3/8” drive socket. Since there is so much spring pressure to overcome, putting the Allen socket on an extension, with a 3/8” drive ratchet wrench, provides way more leverage than one could ever get from a tiny hex key.

Original 5mm hex socket on extension is placed through access hole in hub

Herewith was the problem: I could not push the pin in far enough to engage its lock, because the socket was too wide to pass completely through the hole in the hub. I briefly considered grinding down the socket, but a close examination revealed that would likely weaken it to the point of failure once an extension or a wrench was snapped into place. I briefly (like, for 10 seconds) considered enlarging the hole in the hub before rejecting that crazy idea. (Repair lesson #39.b.2: when making permanent modifications, always do so to inexpensive, replaceable objects, NOT to complex, difficult-to-replace components of the vehicle itself.)

Socket bottoms out before pin can be fully inserted in backing plate (spring and shoes removed for clarity)

Staring at things for several minutes brought forth the revelation that if the 5mm hex shaft were longer, I’d have what I needed. After considering a Home Depot run, which I internally wagered would yield a 25% chance of success, I challenged myself to modify the tool I owned. Could I do this in less than an hour? I thought it entirely reasonable.

Here is the Snap-On 5mm Allen socket about to be modified

With a 3/32” drift, I hammered out the roll pin and pulled out the existing 5mm bit from the socket. I found a standard 5mm hex key in my Allen key collection, and tested it at the car. It was long enough for my purposes. Next, I secured the longer hex key in the bench vise and hacksawed off the short end. (I really should have pulled out the Dremel tool for this step, as the hardened steel took longer than I thought it would to hack off.) I filed the end smooth, and it fit right into the socket. My attempts to drill a hole in it to reinstall the roll pin resulted in two broken drill bits – like I said, that tool steel is hard! But the new bit was a tight fit in the socket, and since I’d be pushing against it, not pulling on it, I let it be, feeling certain that there was nothing to worry about.

Drift makes short work of roll pin removal

This hex key is about to give up its life for a greater good

Hacksaw got the job done, but it took 10 minutes of muscular effort

Total time to modify the 5mm Allen socket: approximately 30 minutes. I attached my ‘new’ socket onto an extension, snapped on a ratchet wrench, and was easily able to engage the brake shoe pins in their locks. Mission accomplished!

“New” socket has considerably longer shaft

I’m keeping my new, longer 5mm Allen socket as is. Who knows when someone might need my help with their Alfa Romeo parking brake shoes? “Hey, I got just the tool for that!”

Success! Longer hex shaft makes short work of engaging pin

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

 

 

Alfa Romeo brake system overhaul, Part 4

The weather today in downtown Neshanic Station NJ reached a balmy (for February) 55 degrees F. While I desperately do NOT want it to be 90 in April, I didn’t mind today’s spring preview; after all, the calendar claims we’re only four weeks away.

That high temp was accompanied by blue skies and lots of sunshine, all of which inspired me to get back to the garage. The Alfa’s brakes have been ignored since last autumn, and even I can’t believe how long it’s been since I’ve put up a blog post about my progress, of which there has been scant little. I have been ordering parts, reading service manuals, and perusing online forums, but there’s been no actual wrench-turning since before Halloween, which feels like a very long time ago.

Old (upper) and new (lower) parking brake cables- note boots

While today’s progress was not substantial, it was significant. The corner has been turned; everything that’s to be removed has been removed. I am now embarking on reassembly, using new parts as required. Starting at the left rear, a new parking brake cable was installed, and a new upper e-brake shoe was also put into place.

Parking brake shoes & springs: old (left) and new (right)

Projects never proceed at an orderly pace. There may be a flurry of activity, then a slowdown. Other, smaller projects may jump the line. Sometimes, it’s a parts delay that forces the pullback. However, there’s something to be said for picking up the tools again after a long layoff: it reinvigorates the soul, and reawakens the motivation.

LR upper e-brake shoe in place

I’m also motivated by an email I received from the NJ Chapter of the Alfa Romeo Owner’s Club, announcing a one-day spring tour for Sunday April 26. That’s nine weeks from today. I plan to drive this car on that tour. Sounds like I have lots of time, but we know how quickly that time will fly. The last time I drove my Alfa was July of last year. I have not gone this long without driving it since my purchase in 2013. So I’m motivated! Let’s hope the trend for an early spring continues.

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

 

 

The 2013 New England 1000 Rally

Happy New Year! It’s winter, with not much going on in the garage or out in the collector car world, so it’s a good time to catch up with some old business. Below is my summary of our participation in the 2013 New England 1000 rally. Previous reports for the 1998, 1999, 2000, 2001, 2005, and 2007 rallies can be found at the highlighted links.

It was the dawn of 2013. We (my rally brother Steve and I) had not driven in the New England 1000 since 2007. Why the six-year layoff? Life had gotten in the way. Whether still in the way or not, we threw caution to the wind and signed on to participate once again. In the 2007 rally, we drove my ’68 Mustang California Special. The Mustang was sold in 2012, and was replaced by my 1967 Alfa Romeo GT 1300 Junior, so the Alfa was the ride of choice. Steve, still living in Southern California, was flying east to be co-driver / co-navigator.

The helmet twins about to depart NJ. The ’12 Ford Focus and ’03 Volvo V70 are both gone.

In hindsight, it was a bit of a gamble to be taking the Alfa on a roughly 1500-mile journey. I had acquired the car only two months prior, in March of 2013, and had put hardly any miles on it. Some early teething problems were already addressed: the battery had died and was replaced, and the hard-as-a-rock tires were swapped out for a new set of Vredesteins.

Overheating was still a concern, though, as (previous owner) Pete’s attempt to install an air conditioning setup overtaxed the car’s cooling system. Even with the A/C turned off, the removal of the factory fan and shroud to make room for the compressor, combined with the extra weight of the compressor and its bracket, made the coolant temperature creep up at idle and low speeds. An aftermarket electric fan was bolted to the radiator, controlled by an on-off switch on the dash. The driver’s job was to constantly monitor the water temp gauge and engage said fan as necessary. It usually worked, but one had to be on constant alert.

The ceremonial attaching of the plate

This year’s host hotel was the Sagamore Resort on Lake George NY, where we had stayed during previous rallies. Much of the week’s itinerary kept us in New York, with dips into New Hampshire and Vermont. (The “New England 1000” takes liberties with its name; please, no angry missives from you Revolutionary Patriots. You know who you are.)

The queue to get past the starting checkpoint

It was great to be back with some familiar faces and vehicles, and it was equally great to meet new folks and see their rides. The classics were again out in force: Mercedes 300SLs, various Jaguars and Maseratis. We noted that modern machinery represented an increasing percentage of the cars: the rally book listed no fewer than 5 new 2013 Porsches, plus several Ferraris less than 10 years old. Our class of three included an MGB and a Morgan 4/4. In the bigger picture, though, our 95 horsepower Alfa was significantly outgunned by the more powerful 6-, 8-, and 12-cylinder ground missiles. The NE1000 of old, with its preponderance of quaint 4-cylinder ‘50s and ‘60s European roadsters, was not to be seen again.

A photo of the Alfa made it into the rally book.

 

By Monday morning, we were already experiencing a highlight of the week when we stepped into the private car collection of Jim Taylor. Jim is the CEO of Taylor Made Products, and judging by what he has been able to amass, business has been very good.

THE JIM TAYLOR COLLECTION

 

Lake Placid NY was another déjà vu, as we had stayed in this Olympic town during the 2001 NE1000. The Mirror Lake Inn is situated on the body of water after which it’s named, and the views are stunning. The view from the top of one of the ski lifts is equally stunning in a very different way!

This is why it’s called Mirror Lake

We left Lake Placid and headed to Whiteface Mountain, still in NY. Although the day was cool, driving up the steep mountain started to push our car’s temperature gauge into uncomfortable territory. Flicking on the electric fan didn’t help, so half-way up the mountain, we opted to reverse direction, but not before losing one of the car’s hubcaps. If that was the biggest tragedy we were to face, so be it.

Our turnaround point; note missing hubcap

Driving into New England proper, we stopped at a perennial favorite: the RPM Repair & Restoration Facility in Vergennes VT. Not only has the Markowski family provided wonderful technical support to the rally through the years, they also run a top-notch workshop which can fix anything automotive, with a special focus on Ferraris. This was the 3rd or 4th time the rally has dropped by, and we were again given free run of the place. This gearhead could stare at disassembled 12-cylinder engines all day long.

RPM, VERGENNES VT

My recollection is that, with the exception of the occasional sprinkle, the weather held up during the week, but I also recall driving home on Friday in torrential downpours (which at least kept the Alfa’s engine cool). Aside from the slight trouble on Whiteface Mountain, the Alfa ran flawlessly for us, and it was an easy decision to proclaim the car fit for duty for future rallies.

 

Modern Porsches

 

C2 Corvette

 

Morris woody wagon

 

Ferrari 365 GTC/4

 

Ferrari 250 GT Lusso

 

 

Lamborghini 350 GT

 

Acura NSX

Maserati Ghibli

 

Something old (Morgan), something new (911)

The Alfa with some of its competition

 

 ACs and Alfa

 

We pose with the Alfa, which was a real champ all week

 

 

All photographs copyright © 2020 Richard A. Reina. Photos may not be copied or reproduced without express written permission.

Alfa Romeo brake system overhaul, Part 3

In Part 2, we covered the ongoing caliper overhaul, both front and rear. While waiting for the caliper rebuild parts to show up, I decided to remove the rear rotors and inspect the parking brake set-up.

Left rear disc, caliper, and brake line

Similar to what Volvo has used for decades, the rear rotors sit over a set of drum brake shoes which apply to the inside of the rear disc “hat”. On the Alfa, these are cable-operated. It was always gratifying that my car’s hand brake worked, but it required a significant tug of the handle to engage.

First challenge was removing the two slotted-head screws holding each rear rotor to the hub. An ordinary screwdriver wasn’t getting the job done, so I resorted to one of my favorite tools: my Snap-On hammer-driven impact driver. A long time ago, Andy Finnegan, the shop foreman at the first Volvo dealer that employed me, suggested this tool to me. While I infrequently use it, it’s one of those tools that makes you glad you have it for the occasions you really need it. This was one of those occasions.

The right tool at the right time can save hours of time and frustration – note slotted screw in rotor face

A few taps with a hammer, and the screws were loose (I also bought new replacements on the chance that I would mangle the heads during removal.). But getting the disc off also required a few heavier hammer blows. Eventually, the rotors were off, first on the driver’s side, then the passenger side.

It would not surprise me if I were the first person to expose the parking brake shoes since this car left Italy. Remember that when I bought it, the car has 54,000 original miles. I also have reason to suspect that the rear brake pads were original to the car. There has likely been little need to check or service these components.

With some effort, I removed the brake shoes on the driver’s side (access is conveniently limited by the hub). The arrangement is typical, with a star wheel for adjustment, and two springs holding the upper and lower shoes. A cable extends from the differential through an access hole in the backing plate, pulling a lever which spreads the shoes. After taking the one side apart, I decided to leave the passenger side intact for reference, and ordered all new parts from Classic Alfa.

Old shoes and springs will be replaced

It was also time to remove the master cylinder. With its so-called “standing pedals” hinged through the floor, my ’67 is one of the last Giulia coupes so configured. Within a year or so (varying by model), Alfa would switch to “hanging pedals” and mount the master cylinder in the conventional location on the firewall.

Standing pedals – accel pedal has been removed

I desperately searched for guidance on the Alfa forums for “master cylinder removal”, but nothing I came across addressed the underfloor location. So I tackled it on my own, and really struggled with it. There are two bolts which pass horizontally through the master cylinder, and these bolts mount into a plate that also holds the clutch linkage. Said plate didn’t look removable to me – that’s from the vantage point of lying on my back, with my nose about 3 inches from the car’s underside. Without removing the plate, there wasn’t enough clearance to remove the bolts. Through sheer luck, I wiggled the cylinder and the bolts and got the master cylinder cleared. But I’ll need to investigate this plate when it comes time for reinstallation.

View of master cylinder while on my back

There was also the matter of the two brake lines, both of which thread into the top of the cylinder. There was little choice but to loosen and drop the cylinder to give me access to the line fittings, but then I lost the leverage one gets from a master cylinder firmly bolted to something.

Brake fluid reservoir on firewall is where you’d expect to find m/c – note hard line which feeds it

Using my flare nut wrenches, the first fitting came out easily. The second one did not. I resorted to using a cheater bar (a length of pipe) on the wrench, and for the first time during this brake overhaul, the wrench slipped on the fitting and rounded it off. The fitting was seized. I cut the line with a pair of diagonal cutters, and the master cylinder was on my workbench. In a bit of good news, the fitting did come loose once I dropped a deep 6-point socket on it.

Master cylinder – note severed line and fitting in right-most hole

There is plenty to do next: finish the rebuilding of the two rear calipers, renew the parking brake parts, and rebuild the master cylinder. Parts were duly ordered and are on their way.

… to be continued ….

 

All photographs copyright © 2019 Richard A. Reina. Photos may not be copied or reproduced without express written permission.